19 research outputs found

    A high‐quality functional genome assembly of delia radicum L. (diptera: anthomyiidae) annotated from egg to adult

    Get PDF
    Abstract Belowground herbivores are overseen and underestimated, even though they can cause significant economic losses in agriculture. The cabbage root fly Delia radicum (Anthomyiidae) is a common pest in Brassica species, including agriculturally important crops, such as oilseed rape. The damage is caused by the larvae, which feed specifically on the taproots of Brassica plants until they pupate. The adults are aboveground‐living generalists feeding on pollen and nectar. Female flies are attracted by chemical cues in Brassica plants for oviposition. An assembled and annotated genome can elucidate which genetic mechanisms underlie the adaptation of D . radicum to its host plants and their specific chemical defences, in particular isothiocyanates. Therefore, we assembled, annotated and analysed the D . radicum genome using a combination of different next‐generation sequencing and bioinformatic approaches. We assembled a chromosome‐level D . radicum genome using PacBio and Hi‐C Illumina sequence data. Combining Canu and 3D‐DNA genome assembler, we constructed a 1.3 Gbp genome with an N50 of 242 Mbp and 6 pseudo‐chromosomes. To annotate the assembled D . radicum genome, we combined homology‐, transcriptome‐ and ab initio‐prediction approaches. In total, we annotated 13,618 genes that were predicted by at least two approaches. We analysed egg, larval, pupal and adult transcriptomes in relation to life‐stage specific molecular functions. This high‐quality annotated genome of D . radicum is a first step to understanding the genetic mechanisms underlying host plant adaptation. As such, it will be an important resource to find novel and sustainable approaches to reduce crop losses to these pests

    Multi-scale characterization of symbiont diversity in the pea aphid complex through metagenomic approaches

    Get PDF
    International audienceMost metazoans are involved in durable symbiotic relationships with microbes which can take several forms, from mutualism to parasitism. The advances of NGS technologies and bioinformatics tools have opened new opportunities to shed light on this hidden but very influential diversity.The pea aphid is a model insect system for symbiont studies. It harbors both an obligatory symbiont supplying key nutrients and several facultative symbionts bringing some novel functions to the host, such as protection against natural enemies and thermal stress. The pea aphid is organized in a complex of biotypes, each adapted to a specific host plant of the legume family and having its own symbiont composition. Yet, the metagenomic diversity of the biotype-associated symbiotic community is still largely unknown. In particular, little is known on how the symbiotic genomic diversity is structured at different scales: across host biotypes, amongst individuals of the same biotype, or within individual aphids.We used high throughput whole genome metagenomic sequencing to characterize with a fine resolution the metagenomic diversity of both individual resequenced aphids and biotype specific pooled aphids. By a reference genome mapping approach, we first assessed the taxonomic diversity of the samples and built symbiont specific read sets. We then performed a genome-wide SNP-calling, to examine the differences in bacterial strains between samples. Our results revealed different diversity patterns at the three considered scales for the pea aphid symbionts. At the inter-biotype and intra-biotype scales, the primary symbiont Buchnera and some secondary symbionts such as Serratia showed a biotype specific diversity. We showed evidence for horizontal transfer of a Hamiltonella strain between biotypes, and found two distinct strains of Regiella symbionts within some biotypes. At the finest intra-host diversity scale, we also showed that these two strains of Regiella may coexist inside the same aphid host. This study highlights the huge potential of bioinformatics analyses of metagenomic dataset in exploring microbiote diversity in relation with host variation

    Développement et applications d'outils d'analyse métagénomique des communautés microbiennes associées aux insectes

    No full text
    The aim of this PhD thesis is to develop innovative approaches to characterize host-microbiota relationships, and to apply them to finely explore the pea aphid microbiota using metagenomic data. Symbiotic relationships play a major role in the life and evolution of all organisms, but are imperfectly described, essentially because of the difficult characterization of the genomic diversity of the microbial partners. The rise of high throughput metagenomic sequencing is a game changer for the study of those systems, but also raises methodological issues to analyze large metagenomic datasets. Metagenomic is here applied to the pea aphid holobiont, a model system for the study of symbiotic relationships, sheltering a moderately complex microbial community. This level of complexity seems to be ideal to develop new approaches for the strain-resolved characterization of host-microbiota relationships. This thesis aims at a better description of this symbiotic community by distinguishing several scales of metagenomic diversity. In a first part, we present a framework for the metagenomic analysis of holobionts, relying first on the taxonomic assignation of reads by alignment to reference or newly assembled genomes, and then on the detection of genomic variants. Whole genome variant profiles make possible to track the evolutionary history of host-microbiota associations with a high resolution. In the case of the pea aphid, we highlight different scales and structures for the metagenomic diversity of the different symbionts, accounting for different transmission modes or evolutionary histories specific to each microbial partner. This framework is based on the availability of a suitable reference genome, that may be hard to obtain in a metagenomic context. In a second part, we therefore present a novel method for reference guided genome assembly from metagenomic data. This method is based on two steps. First, the recruitment and assembly of reads by mapping metagenomic reads on a distant reference genome, and second, the de novo assembly of the missing regions, allowed by the development of an improved version of the software MindTheGap. Compared to a standard metagenomic assembler, this methods makes possible to assemble a single genome in a reasonable time, and allows to detect eventual structural variations within the targeted genome. When applied to the pea aphid holobiont, MindTheGap yielded single contig assemblie of the obligatory symbiont Buchnera aphidicola, and helped to identify different structural variants of the bacteriophage APSE. This works paves the way to a finer characterization of host-microbiota interactions, and to the application of the presented approaches to more complex systems.Ces travaux de thĂšse reposent sur le double objectif de proposer des approches innovantes pour l’étude des relations entre un hĂŽte et son microbiote, et de les appliquer Ă  la description fine de l’holobionte du puceron du pois par des donnĂ©es mĂ©tagĂ©nomiques. Les relations symbiotiques façonnent le fonctionnement et l’évolution de tous les organismes, mais restent dĂ©crites de maniĂšre imparfaite, notamment Ă  cause de la difficultĂ© Ă  caractĂ©riser la diversitĂ© gĂ©nomique des partenaires microbiens constitutifs des holobiontes. L’essor des technologies de sĂ©quençage mĂ©tagĂ©nomique rĂ©volutionne l’étude de ces systĂšmes, mais pose Ă©galement des problĂšmes mĂ©thodologiques pour analyser les jeux de donnĂ©es mĂ©tagĂ©nomiques. La mĂ©tagĂ©nomique est ici appliquĂ©e au puceron du pois, un modĂšle d’étude des relations symbiotiques qui abrite une communautĂ© bactĂ©rienne d’une complexitĂ© modĂ©rĂ©e, idĂ©ale pour dĂ©velopper de nouvelles approches de caractĂ©risation de la diversitĂ© microbienne. Cette thĂšse vise Ă  mieux dĂ©crire la communautĂ© de symbiotes qu’abrite cet holobionte, notamment en distinguant les diffĂ©rents niveaux de variabilitĂ© gĂ©nomique en son sein. Nous prĂ©sentons une dĂ©marche pour l’analyse mĂ©tagĂ©nomique d’holobiontes, qui repose d’abord sur l’assignation taxonomiques des lectures par alignement Ă  des gĂ©nomes de rĂ©fĂ©rence ou prĂ©alablement assemblĂ©s, puis sur la recherche de variants gĂ©nomiques. L’étude de gĂ©notypes complets de symbiotes permet de retracer l’histoire Ă©volutive des relations hĂŽte-microbiote avec une rĂ©solution Ă©levĂ©e. Chez le puceron du pois, nous mettons en Ă©vidence des niveaux et structures de diversitĂ© gĂ©nomique diffĂ©rents selon les symbiotes, que nous proposons d’expliquer par les modalitĂ©s de transmission ou l’histoire Ă©volutive propre Ă  chacun des partenaires microbiens. Cette approche repose sur la disponibilitĂ© d’un gĂ©nome de rĂ©fĂ©rence adaptĂ©, qui est souvent difficile Ă  obtenir en mĂ©tagĂ©nomique. Dans un second temps, nous prĂ©sentons donc une mĂ©thode d’assemblage guidĂ© par rĂ©fĂ©rence en contexte mĂ©tagĂ©nomique. Cette mĂ©thode se dĂ©roule en deux temps : le recrutement et l’assemblage de lectures par alignement sur un gĂ©nome de rĂ©fĂ©rence distant, puis l’assemblage de novo ciblĂ© des rĂ©gions manquantes, permis par des dĂ©veloppements complĂ©mentaires apportĂ©s au logiciel MindTheGap. Comparativement Ă  un assembleur mĂ©tagĂ©nomique, cette mĂ©thode permet l’assemblage d’un seul gĂ©nome en un temps rĂ©duit, et permet de dĂ©tecter d’éventuels variants structuraux sur le gĂ©nome ciblĂ©. AppliquĂ© au puceron du pois, MindTheGap a rĂ©alisĂ© l’assemblage du symbiote obligatoire Buchnera en un seul contig, et a permis d’identifier diffĂ©rents variants structuraux du bactĂ©riophage APSE. Ces travaux ouvrent la voie Ă  la fois Ă  une caractĂ©risation plus prĂ©cise des relations hĂŽte-microbiote chez le puceron du pois par des approches fonctionnelles et mĂ©taboliques, ainsi qu’à l’application des outils prĂ©sentĂ©s Ă  des systĂšmes plus complexes

    Development and application of bioinformatic tools for the metagenomic analysis of insect associated microbial communities

    No full text
    Ces travaux de thĂšse reposent sur le double objectif de proposer des approches innovantes pour l’étude des relations entre un hĂŽte et son microbiote, et de les appliquer Ă  la description fine de l’holobionte du puceron du pois par des donnĂ©es mĂ©tagĂ©nomiques. Les relations symbiotiques façonnent le fonctionnement et l’évolution de tous les organismes, mais restent dĂ©crites de maniĂšre imparfaite, notamment Ă  cause de la difficultĂ© Ă  caractĂ©riser la diversitĂ© gĂ©nomique des partenaires microbiens constitutifs des holobiontes. L’essor des technologies de sĂ©quençage mĂ©tagĂ©nomique rĂ©volutionne l’étude de ces systĂšmes, mais pose Ă©galement des problĂšmes mĂ©thodologiques pour analyser les jeux de donnĂ©es mĂ©tagĂ©nomiques. La mĂ©tagĂ©nomique est ici appliquĂ©e au puceron du pois, un modĂšle d’étude des relations symbiotiques qui abrite une communautĂ© bactĂ©rienne d’une complexitĂ© modĂ©rĂ©e, idĂ©ale pour dĂ©velopper de nouvelles approches de caractĂ©risation de la diversitĂ© microbienne. Cette thĂšse vise Ă  mieux dĂ©crire la communautĂ© de symbiotes qu’abrite cet holobionte, notamment en distinguant les diffĂ©rents niveaux de variabilitĂ© gĂ©nomique en son sein. Nous prĂ©sentons une dĂ©marche pour l’analyse mĂ©tagĂ©nomique d’holobiontes, qui repose d’abord sur l’assignation taxonomiques des lectures par alignement Ă  des gĂ©nomes de rĂ©fĂ©rence ou prĂ©alablement assemblĂ©s, puis sur la recherche de variants gĂ©nomiques. L’étude de gĂ©notypes complets de symbiotes permet de retracer l’histoire Ă©volutive des relations hĂŽte-microbiote avec une rĂ©solution Ă©levĂ©e. Chez le puceron du pois, nous mettons en Ă©vidence des niveaux et structures de diversitĂ© gĂ©nomique diffĂ©rents selon les symbiotes, que nous proposons d’expliquer par les modalitĂ©s de transmission ou l’histoire Ă©volutive propre Ă  chacun des partenaires microbiens. Cette approche repose sur la disponibilitĂ© d’un gĂ©nome de rĂ©fĂ©rence adaptĂ©, qui est souvent difficile Ă  obtenir en mĂ©tagĂ©nomique. Dans un second temps, nous prĂ©sentons donc une mĂ©thode d’assemblage guidĂ© par rĂ©fĂ©rence en contexte mĂ©tagĂ©nomique. Cette mĂ©thode se dĂ©roule en deux temps : le recrutement et l’assemblage de lectures par alignement sur un gĂ©nome de rĂ©fĂ©rence distant, puis l’assemblage de novo ciblĂ© des rĂ©gions manquantes, permis par des dĂ©veloppements complĂ©mentaires apportĂ©s au logiciel MindTheGap. Comparativement Ă  un assembleur mĂ©tagĂ©nomique, cette mĂ©thode permet l’assemblage d’un seul gĂ©nome en un temps rĂ©duit, et permet de dĂ©tecter d’éventuels variants structuraux sur le gĂ©nome ciblĂ©. AppliquĂ© au puceron du pois, MindTheGap a rĂ©alisĂ© l’assemblage du symbiote obligatoire Buchnera en un seul contig, et a permis d’identifier diffĂ©rents variants structuraux du bactĂ©riophage APSE. Ces travaux ouvrent la voie Ă  la fois Ă  une caractĂ©risation plus prĂ©cise des relations hĂŽte-microbiote chez le puceron du pois par des approches fonctionnelles et mĂ©taboliques, ainsi qu’à l’application des outils prĂ©sentĂ©s Ă  des systĂšmes plus complexes.The aim of this PhD thesis is to develop innovative approaches to characterize host-microbiota relationships, and to apply them to finely explore the pea aphid microbiota using metagenomic data. Symbiotic relationships play a major role in the life and evolution of all organisms, but are imperfectly described, essentially because of the difficult characterization of the genomic diversity of the microbial partners. The rise of high throughput metagenomic sequencing is a game changer for the study of those systems, but also raises methodological issues to analyze large metagenomic datasets. Metagenomic is here applied to the pea aphid holobiont, a model system for the study of symbiotic relationships, sheltering a moderately complex microbial community. This level of complexity seems to be ideal to develop new approaches for the strain-resolved characterization of host-microbiota relationships. This thesis aims at a better description of this symbiotic community by distinguishing several scales of metagenomic diversity. In a first part, we present a framework for the metagenomic analysis of holobionts, relying first on the taxonomic assignation of reads by alignment to reference or newly assembled genomes, and then on the detection of genomic variants. Whole genome variant profiles make possible to track the evolutionary history of host-microbiota associations with a high resolution. In the case of the pea aphid, we highlight different scales and structures for the metagenomic diversity of the different symbionts, accounting for different transmission modes or evolutionary histories specific to each microbial partner. This framework is based on the availability of a suitable reference genome, that may be hard to obtain in a metagenomic context. In a second part, we therefore present a novel method for reference guided genome assembly from metagenomic data. This method is based on two steps. First, the recruitment and assembly of reads by mapping metagenomic reads on a distant reference genome, and second, the de novo assembly of the missing regions, allowed by the development of an improved version of the software MindTheGap. Compared to a standard metagenomic assembler, this methods makes possible to assemble a single genome in a reasonable time, and allows to detect eventual structural variations within the targeted genome. When applied to the pea aphid holobiont, MindTheGap yielded single contig assemblie of the obligatory symbiont Buchnera aphidicola, and helped to identify different structural variants of the bacteriophage APSE. This works paves the way to a finer characterization of host-microbiota interactions, and to the application of the presented approaches to more complex systems

    Métagénomique et métatranscriptomique

    No full text
    National audienceCe chapitre propose une étude de la métagénomique, en présentant les méthodes répondant à la question de l'identification des organismes présents dans des communautés microbiennes, avec ou sans références, ainsi qu'à la détermination de l'aspect fonctionnel (métatranscriptomique, inférence de réseaux métaboliques) ou encore à la comparaison d'échantillons métagénomiques

    Metagenomics and Metatranscriptomics

    No full text
    International audienc

    Metagenomics and Metatranscriptomics

    No full text
    International audienc

    Metagenomics and Metatranscriptomics

    No full text
    International audienc

    Métagénomique et métatranscriptomique

    No full text
    National audienceCe chapitre propose une étude de la métagénomique, en présentant les méthodes répondant à la question de l'identification des organismes présents dans des communautés microbiennes, avec ou sans références, ainsi qu'à la détermination de l'aspect fonctionnel (métatranscriptomique, inférence de réseaux métaboliques) ou encore à la comparaison d'échantillons métagénomiques
    corecore